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The interaction of solitons with extended inhomogeneities in molecular chains is investigated. Linear and nonlinear on-site 
defects as well as inter-site (bond) defects are considered. A perturbed nonlinear Schrödinger equation is derived which 
involves three wavenumber (velocity) dependant terms associated with the bond defect. The scattering of solitons from 
defect segments is studied numerically. Periodic scattering patterns as a function of the length of the segment are obtained. 
The periods and their origin are different for weakly and strongly nonlinear solitons. The scattering of solitons from potential 
steps in the presence of transition layers is also studied. 
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1. Introduction 
 
The presence of defects modifies significantly all 

properties of crystals (electrical, optical, magnetic, 
mechanical, thermal, etc.). The role of defects on the 
phonon spectra has been studied extensively in the last 50 
years, both experimentally and theoretically (see e.g. [1]). 
The type and distribution of defects can be probed by 
different methods including infrared absorption, Raman 
scattering, X-ray and neutron scattering and others. Recent 
investigations have focussed on the scattering of nonlinear 
waves (solitons) from defects. The interaction of solitons 
with defects and inhomogeneities is a problem of 
continuing interest, due to its theoretical and practical 
importance. Inhomogeneities break the translational 
symmetry and lead to trapping, reflection and splitting of 
the solitons as well as the emission of continuous waves 
(radiation). Widely investigated is the interaction of 
solitons with linear and nonlinear point defects [2-13]. 

The role of extended defects (segments with modified 
linear, nonlinear or dispersion parameters) on the soliton 
dynamics has been studied in a few works. Breather 
trapping in a region of modified coupling constants has 
been investigated in [14] for a DNA model. The 
interaction of nonlinear Schrödinger (NLS) solitons with 
extended defects of different types has been studied in [15-
17]. The scattering patterns turn out to be quite sensitive to 
the length and structure of the inhomogeneity. 

In the present work, we investigate in detail the 
interaction of solitons with extended inhomogeneities. 
Two distinctly different cases are considered: i) wide and 
fast solitons (weakly nonlinear limit) and ii) slow and 
narrow solitons (strongly nonlinear limit). In both cases, 
for a given range of parameters, we obtain periodically 
repeating scattering patterns as a function of the length of 
the defect segment. The periods in the two cases, however, 

turn out to be quite different and with a different physical 
nature. We also study the role of a thin transition layer on 
the scattering of solitons from potential steps.  

 
 
2. The perturbed NLS equation for a defect  
     segment 
 
As a model, we use anharmonic intramolecular 

(optical) vibrations in a chain, in the presence of a segment 
containing molecules with different parameters. The 
corresponding Hamiltonian in the nearest-neighbour 
approximation can be written as:  
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The segment has a length of d lattice constants and 

involves d+1 guest molecules (p = s, s+1,...,s+d). 
+
nB  and 

nB  are the phonon creation and destruction operators at 
site n, 0ω  is the harmonic intramolecular energy, g is the 
anharmonicity constant and M is the intermolecular 
interaction matrix element for excitation transfer between 
host sites. The guest molecules introduce changes in the 
harmonic, anharmonic and transfer energies described by 
ηε ,  and μ .  

The equations of motion for the averaged vibrational 
amplitudes nn B≡α  yield:  

________________________ 
♣Paper presented at the International School on Condensed Matter Physics, Varna, Bulgaria, September 2008 
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We shall look for solutions in the form of amplitude-
modulated waves 
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ωϕα −= ,   (3) 
 
where k and ω are the wavenumber and the frequency of 
the carrier wave (the lattice constant equals unity) and the 
envelope )(tnϕ  is a real slowly varying function of the 
position and time. In the continuum limit, Equations (2) 
yield the following perturbed nonlinear Schrödinger 
equation for the envelope function: 
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ηε ,  and μ  are nonzero constants within the defect 

segment and vanish outside. Note that the intermolecular 
exchange (bond) defects ~ μ introduce three perturbing 
terms in (4): real zero- and second-derivative terms ~ 

kcosμ , as well as an imaginary first-derivative term ~ 
ksinμ . In the long-wavelength (k << 1) and wide-soliton 

(L >> 1) limit, the bond defects reduce to a linear defect 
with strength 2μ. For fast solitons however (k~π/2), the 
real terms ~ kcosμ  become small and the interaction of 
the soliton with the bond defect is governed by the 
imaginary first derivative perturbing term ~ ksinμ . We 
shall discuss the physical difference between these terms 
in the next section. 

For a homogeneous molecular chain with 
0=== ημε  and 0/cos >gkM  Eq. (4) possesses a 

fundamental bright soliton solution: 
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where φ0, L and v are the amplitude, width and velocity of 
the soliton. We shall investigate the interaction of solitons 
with extended inhomogeneities with nonzero ημε ,, . As 
the interaction of solitons with linear and nonlinear defects 

has been studied in some detail in [6,8-12], we shall focus 
on the specific features of bond defects and the soliton-
defect interactions. 

 
 

3. Resonant interaction of wide and fast  
    solitons with defect segments (weakly  
    nonlinear case) 
 
For wide and fast solitons, the nonlinear coupling 

energy is small compared to the soliton’s kinetic energy. 
In this weakly nonlinear regime, NLS solitons exhibit 
properties similar to linear waves. Evolutionary patterns 
for solitons interacting with linear-defect segments with 
variable lengths are presented in Fig. 1. 

The scattering patterns exhibit a period of four lattice 
sides. For d = 2,6,10, the incoming soliton splits into 
transmitted and reflected parts with nearly equal 
amplitudes. This is clearly a wave-like (nonclassical 
particle) behavior, as the soliton is partially reflected by an 
attractive potential. For d = 4,8,12, the soliton is almost 
totally transmitted through the defect region. The velocity 
inside the defect segment determined from numerical data 
is v=0.142. The dispersion coefficient is M = -0.2. The 
corresponding carrier wavenumber is ξ = arcsin(v/M) = 
0.789. The carrier wavelength inside the segment is λ1 = 
2π/ξ = 7.96. The transmission maxima are at d = m λ1/2 ≈ 
4,8,12,... and the minima at  d = (m+1/2)λ1/2 ≈ 2,6,10,...        

 
Fig. 1. Periodic scattering patterns of solitons with L = 
50 and k ≈ π/2 from an attractive linear-defect segment 

with ε = -0.14 and variable length d. 
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The transmission coefficient for linear waves through 
a potential well with width d is given by (see e.g. [18]): 
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The observed periodicity in the scattering patterns in 

Fig. 1 is described well by (6). 
We obtained similar periodic scattering patterns for 

solitons interacting with a bond-defect segment with 
variable length d. 
        

 
 

Fig. 2.  Periodic   scattering   patterns   of   solitons  with   
L= 50 and k ≈ π/2 interacting with a bond-defect segment  
               with μ = -0.14 and variable length d. 
 
 
Total transmission is observed for d = 2,4,6,… and 

partial reflection for d = 1,3,5,… The explanation of the 
observed periodicity is the following: The velocity of the 
incoming soliton is v = -Msink ≈ 0.2 (M = -0.2). The 
dispersion coefficient inside the segment is M1 = M+µ =-
0.34, and the soliton’s velocity inside the segment 
determined from numerical data is v1=0.34. As the 
dispersion coefficient plays the role of soliton’s inverse 
effective mass, we observe momentum conservation: v/M 

= v1/M1= -1 which yields ξ = k ≈ π/2 (λ1 = λ ≈ 4) i.e. the 
carrier wavelength inside the bond-defect segment does 
not change. From Eq. (4), it follows that for k≈π/2 the real 
(zero- and second-derivative) bond-defect terms vanish 
and so does the potential associated with them. The 
perturbation in this case is associated with the imaginary 
first-derivative term which determines the soliton velocity. 
Hence the velocity inside the bond-defect segment 
changes due to the change of the soliton’s effective mass 
trough the conservation of linear momentum, with no 
potential force acting on the soliton. The transmission 
coefficient maxima at d=m λ1/2 =2m coincide with those 
for linear waves. The partial reflection at d=(m+1/2) λ1/2 is 
due to the nonlinearity, as the reflection coefficient for 
linear waves in this case is negligible. 

The comparison between the scattering of fast solitons 
from linear- and bond-defect segments clearly shows the 
physical difference in the corresponding perturbing terms: 
while linear defects exert a potential force on the soliton, 
bond defects exert both a potential force and a change of 
the effective mass. The effects of the potential force and 
the change of mass have opposite behaviors with the 
wavenumber: the potential force dominates the scattering 
of slow solitons (k << 1) from bond defects, while the 
change of mass effect governs the scattering fast solitons 
(k ≈ π/2) from bond defects. 

 
 
4. Resonant interaction of narrow and slow  
    solitons with defect segments (strongly  
    nonlinear case) 
 

For narrow and slow solitons, the nonlinear coupling 
energy dominates over the kinetic energy and the soliton 
behaves like a deformable and unbreakable classical 
particle. We studied the interaction of solitons with 
segments with modified linear, nonlinear and dispersion 
coefficients. Firstly, we studied rectangular potential wells 
modeled by d consecutive linear on-site defects with equal 
strength ε = −0.007. The width of the wells was increased 
step by step to values much larger than that of the soliton. 
The simulations show that for initial velocities v < 0.04, 
the solitons get trapped inside the well, and for v > 0.06 
they pass through it and escape to infinity for any values 
of d. For initial velocities in the intermediate region 0.04 < 
v < 0.06, the scattering patterns exhibit periodically 
repeating regions of transmission and capture as a function 
of the width of the well. This is shown schematically in 
Fig. 3 where we have plotted the regions of trapping and 
transmission for two different values of the defects. The 
relative widths of the regions of transmission and capture 
depend on the defect strength and the initial velocity, but 
the period of repeat for d >20 is nearly constant and equal 
to ∆d ≈ 36. 
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Fig. 3. Periodic regions of trapping (lower horizontal 
parts) and transmission (upper horizontal parts) as a 
function  of  the  length  of  a  linear-defect  segment with             
   ε = -0.007 (lower curve) and ε = -0.008 (upper curve). 

 
 

Fig. 4 illustrates the evolutionary patterns 
corresponding to transmission and trapping. In a trapped 
state [Fig. 4(b)], the soliton shuttles back and forth inside 
the well. Note the amplitude (shape) oscillations of the 
soliton inside the segment, which are almost totally 
extinguished when the soliton leaves the segment [Fig. 
4(a)]. This suggests a correlation between the capture-
transmission period and the period of the shape 
oscillations. 

 

 
 

 
Fig. 4. Transmission for d = 95 (a) and trapping for           
d = 110 (b)  of  solitons  with  L = 5.75  and v = 0.05 in a  
                linear  potential well with ε = −0.007. 
 
 
The temporal period of the shape oscillations inside 

the segment determined from Fig. 4 is T = 208. The soliton 
velocity inside the segment increases due to 

transformation of the potential energy of the soliton-defect 
interaction into kinetic energy. The energy balance yields: 

 
||42

0
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For the parameters in Fig. 4, this gives v = 0.175. 

Hence the spatial period of the oscillations is X = vT = 
36.4, in excellent agreement with the period of the 
observed capture-transmission patterns. This coincidence, 
which we obtained for other values of the parameters as 
well, shows that the periodic capture-transmission patterns 
are due to a resonance between the period of the shape 
oscillations excited at the boundary and the length of the 
segment.  

Shape oscillations of perturbed NLS solitons result 
from interference of the soliton with accompanying 
dispersive linear waves. Theoretically, they have been 
derived by the inverse scattering method [19-21], as well 
as by small-amplitude linear-wave expansion around the 
soliton solution [22, 23]. In both cases, the frequency of 
the shape oscillations coincides with the nonlinear soliton 
frequency ω = 1/L2. For L = 5.75, the soliton frequency is 
ω = 0.03 and the soliton period T = 2π/ω = 208 
corresponds to the observed period of the shape 
oscillations.  

The qualitative explanation of the capture-
transmission periodic patterns is the following: The 
incoming soliton interacts inelastically with the first 
boundary and loses part of its energy into small-amplitude 
shape oscillations. In the nonresonant case, due to this loss 
of energy, the oscillating soliton gets trapped inside the 
segment. Whenever the length of segment is a multiple of 
the spatial period of the shape oscillations, the inelastic 
interaction with the second boundary extinguishes the 
shape mode, restores the soliton energy and allows the 
soliton to overcome the barrier of the second boundary and 
escape.  

We obtained similar periodic capture-transmission 
patterns for slow solitons interacting with nonlinear- and 
bond-defect segments. 

 

 
 

 
Fig. 5. Periodic regions of capture and transmission as a 
function of length d of a nonlinear-defect segment for          
v0 = 0.05 and η = -0.36 (curve 1) and η = -0.40 (curve  
                           2). The period is Δd ≈ 20. 

|αn|

(a)

(b)

|αn|

1 50 100 150
N



1132                                                    K. T. Stoychev, M. T. Primatarowa, R. S. Kamburova 
 

(a)

(b)

 
 
Fig. 6. Evolutionary patterns for transmission (a) and 
capture (b) of solitons with v = 0.05, L = 5.75 and g = -2 
in a nonlinear defect segments with η = -0.40. d = 97 (a)  
                                and d = 107 (b). 

 
 

The temporal period of the shape oscillations inside the 
inhomogeneity determined from Fig. 6 is T = 140. Within 
a nonlinear defect segment, there is a change of the 
nonlinear soliton energy, besides the kinetic one. The 
conservation of the norm yields a relation between the 
soliton widths in the two regions and the strength of the 
defect: L = L0/(1+ η/g). The soliton period inside the 
defect region is T = 2πL0

2/(1+η/g)2 = 144, in good 
agreement with the temporal period of the shape 
oscillations. A theoretical estimate of the spatial period of 
the oscillations can be obtained from the following 
considerations: when the soliton enters the nonlinear 
defect segment, its shape, velocity, and frequency change. 
The velocity inside the defect region, determined from the 
energy and norm conservation conditions, is:  
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+=                 (8) 

 
For M = -2, η = -0.4 and initial velocity v0 = 0.05,            

v = 0.142 and the spatial period of the oscillations is 
X=vT=19.9. This is in excellent agreement with the period 
of the observed capture-transmission patterns in Fig. 5. 
Hence, the periodic patterns of trapping and transmission 
in the interaction of NLS solitons from extended nonlinear 
inhomogeneities are due (similarly to the linear-defect 
case) to a resonance between the length of the 
inhomogeneity and the spatial period of the shape 
oscillations excited at the boundary or, equivalently, the 

time for which the soliton crosses the inhomogeneity and 
temporal period of the shape oscillations.  

Note that in Fig. 6, shape oscillations exist outside the 
segment too, accompanying the transmitted soliton. Their 
period, however, is T = 208, which corresponds to the 
soliton frequency in the ideal part of the lattice. This 
shows that the interaction of the oscillating soliton with 
the second boundary is a complex two-step process: the 
shape oscillations with period T = 140 are extinguished, 
which allows the soliton to leave the inhomogeneity and 
new shape oscillations with T=208 are excited 
immediately. 

(a)

(b)

 
 
Fig. 7. Evolutionary plots of solitons with v0 = 0.05 
interacting with bond-defect segments with M = -2,             
μ = 0.705 and different length. Transmission for d = 122 
(a) and capture for d = 130 (b). The arrows on the x axis  
                 mark the boundaries of the segment. 
 
 
We obtained similar periodic capture-transmission 

patterns for the interaction of solitons with segments with 
modified dispersion coefficients (i.e. we kept only the 
second-derivative perturbing term in (4)). Typical 
evolutionary plots are presented in Fig. 7. The capture-
transmission patterns follow a period of Δd ≈ 17. The 
temporal period of the shape oscillations inside the 
segment, evaluated from Fig. 7, is T = 137. The velocity 
inside the defect region determined from the energy and 
norm conservation is: 

 2
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For the values of μ, M and v0 in Fig. 7 this gives v = 

0.126, the spatial period of the oscillations X = v T = 17.2 
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coincides with the period of the capture-transmission 
patterns. Note that the shape oscillations are very weak 
and the soliton stays a long time at the second boundary 
before turning back and getting trapped. This shows that 
segments with modified dispersion induce weaker 
perturbations than nonlinear-defect segments with 
comparable strength. This can be explained by the 
different potential profiles at the boundaries for the two 
types of defects. In the discrete case, the potential for 
bond-defects changes over three lattice constants and it is 
smoother than this for linear and nonlinear on-site defects 
which change over one lattice constant. Hence the 
perturbation at the boundary of a bond-defect segment is 
weaker, and so are the shape oscillations and the 
corresponding loss of energy. 

 
 
5. Effect of a transition layer on the scattering  
    of solitons from potential steps 
 
A problem of considerable practical importance is to 

reduce losses in the transmission of solitons from one 
medium into another. This can be achieved effectively by 
introducing a thin transition layer with appropriate 
properties between the two media.  

(a)

(b)

(c)

  
 

Fig. 8. Scattering of solitons with L = 5.75 and k = 0.17 
from a linear potential step with ε = 0.25. (a) - no 
transition layer; (b) - transition layer with ε1 = 0.0625 
and d = 5; (c) - transition layer with ε1 = 0.0625 and d = 9. 
 

Fig. 8 shows the scattering of solitons from a potential 
step, with or without a transition layer. The scattering of 
solitons with L = 5.75 and k = 0.17 from a linear potential 
step with ε=0.25 without a transition layer is shown in Fig. 
8(a). A reflected soliton with considerable amplitude is 
observed, which takes away part of the energy of the 
transmitted soliton. The introduction of a transition layer 
with ε1 = 0.0625 and width d = 5 suppresses the reflected 
soliton [Fig. 8(b)] and improves the transmission. A 
transition layer with thickness d = 9 leads to almost total 
extinction of the reflected wave, and provides the best 
condition for transmission. 

Similar suppression of the reflected wave can be 
achieved by the introduction of a transition layer in the 
case of scattering of solitons from a downwards potential 
step (Fig. 9). This is a nonclassical effect which is 
observed for very slow solitons only. For solitons with L = 
5.75 and k = 0.025, a strong reflection is observed from a 
downwards potential step with ε=-0.06 without a transition 
layer [Fig. 9(a)]. The introduction of a transition layer with 
ε1 = -0.03 and d = 4 suppresses the reflected soliton and 
improves transmission [Fig. 9(b)]. A transition layer with 
ε1 = -0.03 and d = 8 eliminates completely the reflected 
soliton and provides the best conditions for transmission 
[Fig. 9(c)].  

 

(a)

(b)

(c)

  
 
Fig. 9. Scattering of solitons with L = 5.75 and k = 0.025 
from a potential step down with ε=-0.06. (a) - no 
transition layer; (b) - transition layer with ε1 = -0.03 and  
    d = 4; (c) - transition layer with ε1 = -0.03 and d = 8. 
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5. Conclusions 
 
We investigated the interaction of NLS solitons with 

extended inhomogeneities (defect segments and transition 
layers) with different parameters and lengths. Linear, 
nonlinear and bond (dispersion) defects were considered. 
A perturbed nonlinear Schrödinger equation was derived 
on the basis of a microscopic model, which contained 
three terms associated with the bond defects. A 
noteworthy feature is the wavenumber (velocity) 
dependence of the bond-defect perturbing terms. They are 
also of different physical natures. The real zero-derivative 
term ~ cos k governs the scattering of slow solitons, acting 
as a potential force. For fast solitons with k ~ π/2, the 
bond-defect potential terms vanish and the scattering is 
dominated by an imaginary first-derivative term ~ sin k. 
This term induces a change of the soliton velocity due to 
the change of the soliton effective mass through linear 
momentum conservation with no potential force acting. 
Momentum conservation is manifested as a wavenumber 
conservation outside and inside the defect segment.  

In the numerical simulations, for a given range of 
parameters, we obtained periodically repeating scattering 
patterns of solitons from defect segments as a function of 
the length of the segment. The scattering patterns and their 
periodicity were different and of different physical origins 
for weakly and strongly nonlinear solitons. For wide and 
fast solitons (weakly nonlinear regime), a periodicity in 
the transmission of solitons through defect segments was 
observed with a period of half the carrier wavelength 
inside the segment. This type of periodicity is inherent to 
the transmission of linear waves.  

For narrow and slow solitons, periodic patterns of 
transmission and trapping of the solitons in attractive 
defect segments are obtained as a function of the length of 
the latter. This type of periodicity is due to the excitation 
of an internal shape mode of the soliton at the first 
boundary and its resonant extinction (in the case of 
transmission) at the second boundary. The period of these 
capture-transmission patterns coincides with the spatial 
period of the shape mode.  

The scattering of solitons from potential steps in the 
presence of a narrow transition layer was also investigated. 
It was shown that transition layers with suitably chosen 
parameters can suppress and even eliminate completely 
the reflected waves, and thus improve the transmission of 
solitons from one medium into another.  
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